Flexible and responsible manner: Is it necessary to mobilize data?

Laura Portell-Silva (BSC) · Eva Garcia-Alvarez (BBMRI-ERIC)
Sharing is caring, and it is the right thing to do

Motivations
- Accelerating research
- Increased visibility and discovery of your research data
- Increased (re)use of your research data
- Compliance with funders, publishers and other policies

Challenges
- Understanding data protection
- Use of (meta)data standards
- No data repository
- Missing skills or resources
Improving data flow and secondary data use across teams and between disciplines

Increase **Flow of Information**

Support Collaboration

Increase knowledge

Team Science

Figure: Knowledge Turning, Information Flow Josh Sommer, Chordoma Foundation, 2011

Goble, De Roure, Bechhofer, *Accelerating Knowledge Turns*, I3CK, 2013, isbn: 978-3-642-37186-8
We all produce as well as reuse (other people’s) data digital objects

Documents
(Thesis, Report, Conference Papers, Articles, Survey etc.)

Datasets

SOPs

Figures, Photos

Workflows

Slides

Algorithms

Codes

Software

Databases

Deliverable 6.1 · “Expected user interactions”
Can data be truly shared? ... and mobilized?
HealthyCloud user story

- Cancer
- Atrial fibrillation

Researcher → Research Question
HealthyCloud user story

- Cancer
- Atrial fibrillation

Research Question → FAIR Data Portal
The FAIR Health Data Portal

FAIR health data portal specifications
• Metadata catalogue of data hubs and data collections
• Metadata contribution guidelines
• Data access conditions
• Infrastructure providers for computational resources
• Guidance & knowledge hub

Deliverable 6.2 • “Specifications for the FAIR data portal”
HealthyCloud user story

- Cancer
- Atrial fibrillation

Where is the data?

Researcher → Research Question → FAIR Data Portal → Data Collections

Data Hubs
Specifications of data access

- Considerations for data access (landscape)
 - Data characteristics
 - Organization of the data sources
 - Traditional vs machine-driven data access
- Identification of data access main steps and their characteristics based on the different scenarios
 - Data access application
 - Data access negotiation
 - Data access conditions
 - Implementation of data access

Specifications need to be flexible and are highly dependent on the level of complexity of the portal

Deliverable 6.3 • “Specifications for data access”
HealthyCloud user story

- Cancer
- Atrial fibrillation

Research Question

FAIR Data Portal

Where is the data?

Data Collections

Data Hubs

Where are the computational resources?

Compute infrastructure
Compute infrastructure considerations
Can data be mobilized?

Do I have enough computing capacity where I have the data?

- If YES, you are ready to analyse your data.
- If NOT consider using a Secure Processing Environment (SPE). If data cannot be moved (GDPR, confidentiality), the SPE has to be located in the same place (depending on national and institutional agreements) where the data is. If data can be moved (anonymized, public), a global SPE can be used.
Compute infrastructure considerations
Can data be mobilized?

Do I need to use data from someone else?

• If computation is available and **data cannot be moved** → Federated analysis
• If computation is available elsewhere and **data can be moved** → Distributed analysis

Deliverable 5.2 - “Analysis of existing orchestration mechanisms for distributed computational analyses including a general overview to facilitate new developments”
Compute infrastructure considerations
A matter of trust…

- **Safe projects**: is this use of the data appropriate?
- **Safe people**: can the research team be trusted to use this data appropriately?
- **Safe data**: is there a disclosure risk in the data itself?
- **Safe settings**: does the facility itself limit unauthorised access and use?
- **Safe outputs**: are all results removed from the safe setting non-disclosive?

Deliverable 5.1 · “Analysis of existing computational infrastructures”
Define a capabilities maturity model for establishing different levels of engagement.

Consider both perspectives: service providers and end-users, to facilitate expectation management.

Look for alignment with parallel efforts, e.g. Gaia-X and EOSC.

Deliverable 5.5 · “Reference guidelines for the establishment of an ethically sound and legal compliant health data research ecosystem”
HealthyCloud user story

Deliverable 7.3 - “Validation of proposed solutions and gap analysis”
HealthyCloud user story

- Cancer
- Atrial fibrillation

Researcher → FAIR Data Portal → Data Collections → Data Hubs → Compute infrastructure → Ethical, Legal and Societal impact

Where is the data?
Where are the computational resources?
Conclusions

➔ The user journey serves as a framework for identifying key stages for systematically using health-related data for research purposes across Europe.

➔ The FAIR Health Data Portal is an invaluable starting point for finding available both research data and computational resources.

➔ Data access conditions play an important role as they represent the implementation of the data governance.

➔ Data processing is conditioned by various factors, including computational capabilities and data granularity.

➔ Collaborative alignment with other initiatives is essential to ensure a coherent framework where researchers can use health-related data seamless.
Thank you!

Follow us on social media:

www.healthycloud.eu

@HealthyCloudEU

www.linkedin.com/company/healthycloudeu

The HealthyCloud project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement Nº 965345.
Highlights

Expected users’ interactions

PHILIP
POLICY AND DECISION MAKER

“I want to advance on policies for a trustworthy sensitive data usage”

NEEDS
• Access to summarized information about health-related trends is the general and/or disease-specific population
• A reference place to gain access to heterogeneous health-related data sources, including aggregated information about specific healthcare sectors or data usage patterns
• Assessment of impact of the policies they put forward

CHALLENGES
• Do not know where to find health-related general population or disease-specific trends
• Access to heterogeneous data sources, which might be geographically distributed and may fall under different legal frameworks
• Justify investments and health-related decisions to tax payers and voters

EXPECTATIONS
• Easy-to-filler trends and visualizations to enable the policy formulation and decision-making process
• A portfolio of indicators for measuring health-related data usage impact

GOALS
• Want to promote policies enabling health-related data research in an ethical, safe, legally compliant and socially aware manner
• Want to understand the uptake of current policies and existing barriers preventing their implementation
• Want to promote best practices for translating data-driven research results into good clinical practice guidelines
• Want to identify and extract information about general and/or disease-specific population trends to implement healthcare plans
• Want to increase the impact of the policies they are promoting
• Want to have access to aggregated information for data usage patterns from different sources and/or domains

SKILLS
• Know how to combine information from different sources to promote research and advance existing ones
• Understand the challenges for a legal use of health-related data for research purposes.

Age: 50
Occupation: Policy officer
Interests: Politics

GOALS
• Want to share their data for research, innovation and policy making
• Want to know what research is conducted for their medical condition and how the data is used
• Want to have access to summarized information about current trends in the general and/or disease-specific populations

NEEDS
• Find what research is being done for their condition/disease
• Where their data is being used and how
• Understand how secure the ecosystem is (data and communications)
• Know who is accessing the data (researchers or companies)

AGE: 35
Occupation: Science teacher
Interests: Research

DATA-GENERATION AND USAGE

CAREER STAGE

LEGAL BASIS

INTENDED USE OF DATA

TEMPORAL SCALE OF ACTIVITIES

Date provider

Beginner

Data controller

Technology-oriented

Short term

Date curators

Intermediate

Data processor

Usage-oriented

Long term

Date curators

Advanced

People of the future

People of the past
Contribution to HRIC

- **Service 2**: Identification of gaps for data governance
- **Service 3**: Identification of gaps for data interoperability
- **Service 4**: A health research community interface service, with the EOSC
Lessons learned (1)

• What would you have done differently?
 • A broader participants expertise in the workshops
 • In-person workshop/s to validate the findings on the user profiles
 • Better definition of data and computational resources access
 • Better definition of access conditions of the expected for the FAIR health data portal
Lessons learned (2)

• Which have been the missing discussions?
 • Collaboration with data related work packages to elaborate on services required by end-users, e.g. data anonymization, adoption of the FAIR principles, data quality assessment.
 • Discussions about the accessibility of computational resources
Future directions

- What is the missing expertise in the consortium?
 - User experience and engagement experts
 - End-users of the HRIC
 - Broader EOSC and EHDS representatives
Use cases scenario

- Cancer
- Atrial fibrillation

Researcher → FAIR Data Portal

Data Collections

Data Hubs

Compute infrastructure

Ethical, Legal and Societal impact

Where is the data?

Where are the computational resources?
Data life-cycle

Key recommendation: Include data quality measures as a mandatory part of the data life-cycle

Include the WP leads institutions logo in the Master Slide
HealthyCloud user story

- Cancer
- Atrial fibrillation

Researcher → FAIR Data Portal

Data Collections → Data Hubs

Ethical, Legal and Societal impact

Where is the data?

Where are the computational resources?

Research Question
Uses cases driven analysis